Proton-Mediated Electron Configuration Change in High-Spin Iron(II) Porphyrinates
نویسندگان
چکیده
منابع مشابه
Proton-mediated electron configuration change in high-spin iron(II) porphyrinates.
The synthesis, molecular structure, and electronic structure characterization of two five-coordinate high-spin imidazolate-ligated iron(II) porphyrinates are reported. Their electronic structure, as deduced from Mössbauer spectra obtained in strong magnetic fields, is distinctly different from that of the analogous imidazole-ligated species. The resulting electronic structure models are consist...
متن کاملSpin-orbit-mediated anisotropic spin interaction in interacting electron systems.
We investigate interactions between spins of strongly correlated electrons subject to the spin-orbit interaction. Our main finding is that of a novel, spin-orbit mediated anisotropic spin-spin coupling of the van der Waals type. Unlike the standard exchange, this interaction does not require the wave functions to overlap. We argue that this ferromagnetic interaction is important in the Wigner c...
متن کاملSpin-dependent electron-proton scattering in the Delta-excitation region.
We report on measurements of the cross section and provide first data on spin correlation parameters A(TT') and A(TL') in inclusive scattering of longitudinally polarized electrons from nuclear-polarized hydrogen. Polarized electrons were injected into an electron storage ring operated at a beam energy of 720 MeV. Polarized hydrogen was produced by an atomic beam source and injected into an ope...
متن کاملHyperfine-mediated gate-driven electron spin resonance.
An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nu...
متن کاملHigh-field electron spin resonance of spin labels in membranes.
High-field electron spin resonance (ESR) spectroscopy is currently undergoing rapid development. This considerably increases the versatility of spin labelling which, at conventional field strengths, is already well established as a powerful physical technique in membrane biology. Among the unique advantages offered by high-field spectroscopy, particularly for spin-labelled lipids, are sensitivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2005
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja055129t